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The aim of this paper is to extend Lozanovskii's results on Banach
lattices having order ¢ -continuous norms (see [8] for details )
to operators defined on Banach lattices. -

Let E be a Banach lattice and let F be a Banaéh space.

An operator T ¢ L(E,F) is said to be of type 4 provided that

0 =< xnl in E implies (Tx,)p is norm convergent in F.

T is seid to be of type B provided that

0 < th y Ixgll s K in E implies (Tx, ), is norm convergent in F.

The identity of en order o« -completé Bsnach lattice E is an operstor
of type A (respectively of type B) iff E has order ¢ -continuous
norm (respectively E is weakly sequentially complete).

Our mein results are as follows

THEOREM A +Let E Dbe an almost ¢ -complete Banach lattice (the reld-
vant definition appears below),let F be a Banach space and let T e
L(E,F).Then the following assertions are equivalent:

i) T is of type & :

’

iiy) 7 maps the ideal IE (generated by E in E" ) into F 3

iii) T hgs the Pelczynski's property (u),i.e. for each weak Cauchy

sequence (xn)n in E there is a weakly summable sequence (yn)n
in T(E) such that Tx - Zn Py B,

) k=1"
iv) There exists no subspace X of E,isomorphic to la),such that

T|X is an isomorphism.

= ey
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OREM B. Let E be a Banach 1éttice,r a ‘Banach apace4and T ¢ L(E,F).
hen T is of type B iff there exists no sublattice X of E,lattice B

omorphic to s ,8uch that T|X is an isomorphism.

elated results are discussed in [12].

he author is much indebted to P.G.Dodds for providing him with a copy

+ PRELIMINARIES

The main ingredients which we need to characterize the operators of
type 4 are a very general scheme to associate AM- and AL- spaces to a
given Banach lattice and some consequences of Grothendieck's criterion

of weak compactness in a space ((S)'.

Let E be a Banach lattice and let x ¢ E, x > O.We consider the ideal

E, generated by x in B -
E, = {yeB; (3) %30 such that [y] ¢ < x}

endowed with the norm

iyl ; = inf { o ; ¥| ¢ xx} .

Then B is an AM- space with a strong order unit (which is x)} and

 thus order isometric to a space C(S,) for some compact@aausdorff)si.
If =" € E", x" 3 O, then the Banach lattice E,. = E"yu M E endowed
with the norm induced by “\“x" is slso an AM-~ space and the cano-

nicel inclusion ix"‘Ex""'__’ E is en interval preserving mapping .

For each x' ¢ B', x' 3 O, we consider on E the felloﬁing relation of

equivalence
x~y Iiff X' (|x=-y|) = 0 «

The completiom of B/~ with respect to the norm

Ixl_, = x* (lx1)
1

is an AL- space ,denoted by L;(x'). Let us denote by Jx,;E-———>I.(x')

the canonical surjection.Them (Jjx:)' = iy -
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The prerequisites which we need on weakly compact operators defined

on (C(S)- spaces are essentially contained in the following

l.1 THEOREM .Let S be a compact Hausdorff space,E a Banach space and
b A L(d(S),E).Thcn the following assertions sre equivalent:
i) T is weakly compact ; :
ii) T maps every bounded sequence of pairwise disjoint elements in-
to a norm convergent sequence ;
iii) T maps every monotone bounded sequence into a norm convergent
sequence ;
iv) There exists no sublattice X of C(S),order isomorphic to ey >
such that T|X is sn isomorphism ;
v) There exists a positive Radon measure [ on S such that T is
sbsolutely continuous with respect to p , i.e.
fecoll sell-ll + e r-v(l-l);
for each ¢ > 0;
vi) T maps every boundgd sequence into a sequence with stable sub -
sequences .
Recall that a sequence (xn)n of elements of E is said to be stable
(wiih limit. x) if there e#ists en X ¢ E such that

lim "12 X ) -X “ = 0 ,uniformly in the set of all strictly in -
n—oolln ~i=1

creasing sequences (k(n)‘-)n of natural numbers.

The equivalence of i)~ iii) was‘proved by Grothendiepk [3) end de-
rives from an earlier criterion of weak compactness due to punford

and pettis.The condition iv),due to‘pelézynaki ,emphasizes the role of
basic sequences in the problem under study.The equivalence of v)-vi)
with i) is proved in [18] . H.P.Rosenthal has used Grothendieck ‘s
results to express weak cohpactness (of a bounded subset of a space

Ll(v.) ) in terms of relatively diajoﬁnt families. e shall need the
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following consequence of his theory

1.2 PROPOSITION. (H.P.Rosenthal [13] ).Let E be a Benach space.

i) 1f T e L(e, ,E) is an operator such that inf uTen i>0 ,where
("en)n denotes the natural basis of c, ,then there exists an infinite
subset MC N such that T,‘co(m) is an isomorphism.

ily If Te¢ IAlP°, E) is an operator such that Tlco is en isomor-
phism then there exists an infinite subset M C N such that r 119 m)

is an isomorphism.

2.ALMOST 0 -COMPLETE BANACH LATTICES

L

Phe aim of this section is to discuse a certain generalization of the
concept of (order) ¢ -completeness of a Banach lattice. The results

which we obtain are similer with those prowved by Dodds in [3] i

2.1 DEFINITION. A Banach lattice E is said to be almost ¢ -complete
provided that for each order bounded sequence of pairwise disjoint
positive elements x, of E there exists an operator T ¢ L(1°°,E)

such that ren_= X, for each n ¢ N.Here (°n)n denotes the natural

basis of ¢, .

A sequence (xh)n as in Dpefinition 2.1 above is'woakly summable and
thus associated to an operator T € L(e, ,E)..( Actually T is a lattice
homomorphism from ¢, into a suitable E, }.If E is almost C-complete

then T extends to bk

Clearly,every ¢ -complete Banach lattice is also almost ¢ -complete.
Other examples are indicated below. :

2.2 .Let E be an almost ¢ -complete Banach lattice and let
I be a closed ideal of E .Then E/I is also almost g -complete.

particularly ,the Banach lettice C( PN~\N) = lu)/co is almost
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¢ -complete though it is not ¢ -complete.
Proof . Let s :E—— E/I the canonical surjection and let = .
be a sequence of peirwise disjoint elements of E/I such that 0 < ¥

€ m(x) for a suitsble x ¢ E, x > 0.Then by Lemma 2 in [1] there
exists a sequence (Jr.n)n of pairwise disjoint elements of E such
that 0 < X, <x and X fxn)\, = ¥ for each n ¢ N.The proof ends

with an appeal to pefinition 2.1 above .[]

2.3 PROPOSITION. Assume the continuum axiom.Then every Banach lattice

E having the interpolation property is almost ¢ -complete. (Recall
thet a Banach lattice E has the interpolation p‘roperty provided that
for any sequences (xn)n and (yn)n in E with X €Y, for every

m,n € N, there exists an x ¢ E such that €X £y, for every n).
*n n *OI :

%

Proof.In fact, if E has the interpolation property then all the spaces
E (x € B, x >0 ) have also the interpolation property .As noted in
[15:] »@ space C(S) has the interpolation property iff sisen F -
space,i.e. disjoint open r -subsets of S have disjoint closures. 1t
remains to apply Lindenstrsuss'result in [5] :BY ass;ming the conti -
nuum axiom it is true that each operstor T from €, into a space C(s),

with § an P -space,extends to 1% .0

2.4 PROPOSITION.Each complemented sublattice of an almost ¢ -complete

Banach lattice is also almost ¢°-complete.

An example due to Bade ( see [15] for deteils) shows that the inter -
polation property does not pass to complemented sublattices .Conse -
quently the almost ¢ -completeness does not coincide with the inter-

polation property.

The main resultof this section is the following extension of the yi-

tali -Hahn-Saks theorem in measure theory

e

’
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THEOREM.Let E be an almosi ¢ -complete Banach lattice,let (xn')n’

~ E* end suppose that x'(x) = lim x '(x) exists for each x¢ E.
, n— 00 .

en:
i) For each 0 g X ¢ E, 8sup |xn'(xk)| — >0 8 k — 00
. v . n ;

r every disjoint sequence (x.), C [0sx]
ii) x' ¢ B' end x'(x) = lim X '(x) holds for all x in the

n—» 00

eal I; generated by E in E".

oof. i) By Deflnltion 2.1 above we may. restm.ct ourselves to the
se E = 1°° ywhich was first treated by Grothendieck in [l] » Theo-

m 9. The assertion ii) follows from i) and Theorem A in [2] .0

6 COROLLARY. Every almost ¢ -complete C(S)—space has the @Grothen-
d;ieck property,i.e. xn' __"_'__, 0 in c(s)' implies x,’ RS
We do not know if the converse is true. ' |

rhe proof follows from Theorem 1,1 ii) end rtheorem 2.5 i) above.[]

2.7 GOROLLARI.Let E be an almost ¢-complete Banach lattice, B C E'
a band and P:E* — B the corresponding pfojection.If (x,"), C B
and xn' W, 0 then pxn' _._wl_,o .Consequently aach"band BCEBE'
kf‘is w' - sequentiaslly complete. ’ : ‘
Proof.Let us denote by @ the projection of IE‘ onto the carrier band.
of B in Ig .sccording to Theorem 27.12 in [9] it follows that

(Px' )x = x'(Qx) for each x € IE , X' ¢ E* and thus by Theoren 2.51i)

ebove we obtain that (Px,')x = X,'(gx) —= O for each x € Ip B
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3.THE MAIN RESULTS

We start with the following

3,1 LEMMA.Let E be a Banach lattice,F a Banach space and T"é h(E,P).
Then the following assertions are equivalent: -
i} T is of type & ;

ii) T maps every order interval of E into a relatively weakly com -
pact subset of F ; ‘

iii) T maps every order bounded sequence of pairwise disjoint elements
into & norm convergent to O sequence ; v

iv) T maps every order bounded sequence into a sequence with stable
eubaequences . .

If in addition E is ¢ -complete then the conditions'i)-iv) above
are also equivalent with :

v} There exists no sublattice X of E,lattice isomorphic to 1%

such that T|X is an isomorphism.

)

proof.The condition ii} is equivalent with the fact that all composi-
tions ‘I’M‘-*. (x € B, X > 0) are weakly comﬁact.coneequently the e-
quivalence of the conditions i) - iv) follows from Theoreml.l above.
Clearly, iii} implies v).We shall show that v) implies iii}.For,let

(x )y C [o,u] a sequence of pairwise disjoint‘e}ementa of B and sup-

pose that inf ll'rxnll > 0.We consider the operator 8:1°—» g given
by S((ah)n = (o)= Z ax, . Then ToS verifies the asaumptiona

of Proposition 1.2 ii) above and thus the restriction of P to a cer-
tain sublattice X of E, lattice isomorphic to e s is an isomorphism,

contradiction.D
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.2 THEOREM.Let E be sn almost ¢ -complete Banach lattice ,F a Benach
ace and T ¢ L(E,F).Then the following assertions are equivalent :
i} T is of type & ;

~ii) T maps the ideal IExggencrated by B in BE") into F ;
iii)y T hes the Pelczynski'l\ﬁrgperty (u) ,i.e. for each weak Cauchy
equence (x,)n in § there is a weakly summable sequence.(yn)n in
T(E) such that Tx - Z‘,Ll ¥\ —2— O ; ‘
" jv) There is no subspace X of E,isomorphic to €[0,1],such that T | x
is en isomorphism ;
' v) There is no subspace X of E,isomorphic to 1°°, such that TI|X

is en isomorphism .

proof. i)e=>ii).Let Q:BE——— E" the canonical embedding and let

X ¢ E, X > O.Since ix is interval preserving 8o is (ix)" (see [T])
and thus

e [0,qx] = T [0, (ig)"x ] = (reipi"[o,x] .

I£ T is of type & then Teoi, is weakly compsct and thus T"[0,Qx] C F
for each x € E, x > O.

ii) => iii).without loses of generality we may assume that E is also
 ‘eeparable.Then E (end also Bg ythe band generated by E in E") has a

weak order unit u > O.Let (xn)n be a weak Cauchy sequence in E.

Since Bp is w'-sequentislly complete ,there exists & z ¢ Bp such

that x, __¥' _ 2z .See Corollary 2.7 above.Since BE is an order

complete vector lattice with a weak order unit,there exists a sequence

(2,3, of pairwise disjoint elements such that Iznl <€ nu and
z = (0)= 2: 2, .The sequence (zn)n is w' -summable (with summ 2}

and contained in Iz .In fact,for each x' ¢ E' we have E:J x’(zh)ls

¢ 7 jmltx) s Iel@ emd sar) = ) ome). BoiD
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Yo =T"2, ¢ F for each n € N.The sequence (yn)n being w'-summable
in p»,it is also weskly summable in F.It is clear that

y.(,.rx.n_ Z:_- yk) —_— 0 for each y' ¢ F'.
iii) == iv).In fact yit is well known that c[b 1] contalns the Ja-

mes' space J as a subapace and that 1 fails the Pelczynski's pro-

perty (u).0n the other hand,the property (u) is hereditary.See [6] for
] detalla.

‘iv)=) v).In fact, 1%° contains an isomorphic copy of C[O l]

v) = 1). If T is not of type A then by Propos:Ltlon 3.1 above there
exist an a > 0 and a sequence (xn)n c [0,x] of palrwme disjoint
elements of E such that | TX, | > a.Since E is almost ¢ -complete,
there exists an operator 8 ¢ (1% » E ) such that Se, = x, for
each n ¢ N.Here (e ) denotes the natural basis of ¢, +Then Proposi-
tion 1.2 above yields a subspace X of E,laomorphlc te 1% s 8uch that
Tlx is an isomorphism.0d

We pass now to the problem of charactérizing the operators of type B.

We shall need the following result concerning the reciprocal punford-

Pettis property:

3+3 LEMMA.Let E be a Banach lattice which contains no lattice 1somorph
of 1l » F & Banach space and T ¢ L(E,F).If T maps every weakly con -
&snt\sequence of pairwise disjoint elements into s norm convergent
sequence \15hen T is weakly compact.

See [11] for details.

3.4 THEOREM.Let E be a Banach lattice,F a Banach space and T ¢ L(E,F),
Then the following assertions are equivalent:
i) * is of type B :

]

iiy ro i is weakly compact for every x" ¢ E" , X" » 0;
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iii) (xn)n is a weakly summable sequence of pairwise disjeint

positive elemente of E then [Tx, | — 0;

iv) It (x ), is a weakly summable seduence of positive elements .

of E then |Tx, ||—>0;

v) There exists no sublattice X of E,lattice isomorphic to ¢, ,

such that T |x is an isomorphism.

Proof.clearly i)ye==>1iv) = jii)&e==¥),
iii)y==1ii). one applies Lemma 3.3 above.Bach Banach lattice Egn is

an AM-space end thus contains no lattice isomorph of 11 .Also ,each

norm bounded sequence of pairwise disjoint elements of E., is equi-

valent to the natural besis of ¢, end thus it is weskly summable.

ii)=> 1) .Bach sequence (xn)n E such thet 0 < xnf and lenll <K

cen be viewed as a weak Cauchy sequence in a certain space E,, D

From Lemma 3.1 and 'rhebren 3.4 ii) it follows that each opefator of

type B is also of type 4. A case when the converse is also true is

indicated by the following:

3.5 PROPOSITION.Let E be a Banach lattice,F a Banach space and

TeL ', F) en operator of type A.Then T is also of type B.

Proof, suapboao that T is not of type B.Then by Theorem 3.4 there exlsta

a woakly aumnable sequence of pairwise disjoint elements x of E such

that Il'rznll > &> 0.Then X = Span (x.)n is lattice isomorphic to

¢ JLet i: X —» E' the canonical inclusion and let P:E"' —E'

o
the positive projection given by (Px"')x = x"'(x) for all x"* ¢ E"'

end x € E.By Proposition 1.2 ii) there exlsts an infinite subset

N C N such ?‘.hat ToPoi® I o ('Nl) is an 1aomorphlsm. Then ?{":
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Span (xn)n €Ny is lattice isomorphic to 1% and the restriction of

P to ¥ is an isomorphism,in contradiction with the fact that T

is an operator of type A. O

3.6 PROPOSITION.Let E be a Bansch space,F @& Banach lattice snd Te

L(ﬁ;r).rhen the following statements are equivalent:
i) ?* is of type B ;
ii) jx‘° T is weakly compact for every x' ¢ E', x'> O0;

1

~ iii) There is no complemented subspace X of E,isomorphic to 1,

such that PT(X) is complemented in F and T| X is an isomorphism .

Every weakly compact opérater is of type B.The converse is not gene-
rally true.s remarkable exception constitutes the case when E is a

space C(S). See [4] .

4.0PEN PROBLEMS.

The main problem which we leave open concerns the extensions proper-

ties of the operators of type B.An operastor T defined on a Banach lat-

tice E with ues in a Banach space F is said to be of strong type B
provided that p* 8 the band BE',generated by E in E", into F.Since

Bp is the range of a (positive contractive) projection of E" ,such

an operator extends to E". Clearly,every operator of strong type B

is also of type B.

4.1 PROBLEM.Does there exist an oberator of type B which is not of

strong type B ?

R
e N




